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The integration of multiplet van der Waals interactions 

D. LAIC’GBEIN 
Battelle-Institut e.V., Frankfurt am Main, Germany 
MS.  receized 22nd February 1971 

Abstract. The integration method for many-particle van der Waals interactions 
of general order, which was found useful in Drude model calculations, can be 
successfully used also in purely quantum mechanical investigations. The  
quantum mechanical perturbation series of the dispersion energy is shown not 
to contain any poles even if the unperturbed electron states are degenerate. I t  
is factorized by means of a linear integral transformation, and subsequently 
integrated by combining concurrent interactions into effective matrix elements 
(Green’s functions), 

1. Introduction 
Recently, an analytical summation of van der Waals interactions between all 

multiplets of atoms in a macroscopic ensemble was reported (Bade 1957, Lucas 1967, 
1968, Nijboer and Renne 1967, 1968, Langbein 1971a). I t  enables a representation 
of the dispersion energy between macroscopic bodies by their macroscopic reaction 
fields (Langbein 1969, 1971a,b). The basis of the calculation is the Drude model of 
dispersion, which replaces each atom by a number of harmonic dipole oscillators, 
Each dipole exhibits its quantum mechanical zero-point energy. The  change of the 
characteristic frequencies via the interaction with all other dipoles causes a decrease of 
the total zero-point energy, that is, an attractive dispersion energy. 

The determination of the perturbed dipole frequencies and the summation of 
multiplet interactions involve the solution of a linear secular problem and the intro- 
duction of a diagram technique. These steps and the generality of the final energy 
expression (Nijhoer and Renne 1968, Langbein 1969, 1971b) suggest an easy exten- 
sion of the procedure according to the Drude model to quantum mechanical methods. 
It is the aim of this paper to show that a similar diagram technique and summation 
of multiplet terms is also applicable to the calculation of the total energy of arbitrary 
systems of interacting non-overlapping electron states. 

The  proposed method enables a general summation of multiplet interactions in a 
purely quantum mechanical treatment of the dispersion energy (London 1930, 1937, 
Margenau 1939, h i l r o d  195 l), and also eliminates the restriction to include only 
interactions via electric dipole fields. The  final energy expression turns out to be 
closely related to that resulting from many-particle Green’s function techniques, and 
may be also applied to electrons interacting via phonons, i.e. to the problem of super- 
conductivity. 

2. Perturbation theory 

interact via the Hamiltonian H. Then, for the coefficients 
electron states $ t  = C a t j / j )  we obtain the secular equations 

Let us consider an orthonormal set of unperturbed one-electron states li), which 
of the perturbed one- 
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(i = 1, 2, ...). According to perturbation theory, the perturbed eigenvalues are 
given by 

The energy gain of the electron system due to the interaction via H is the sum over 
the energy gain E,  - H I ,  of all occupied states li), and we are interested in 

where iEa denotes that ji> is occupied, while i E b  means that state li> is unoccupied. 
By inserting (2) into (3) we obtain 

LE = A,E+&E+A,E+ ... (4) 
where 

H i  jHjkHk lHl i  A4E = 2 
isa;i,k.E#i ( H i i -  H f j ) ( H t i -  H k k ) ( H i i -  H l l )  

H i j H j i H i k H k i  - 2  
i s u ; j , k # i  ( H i i - H j j ) 2 ( H i i - H k k j  

The second sum in (7) results from the iterative substitution of E,  into the denomi- 
nators on the right-hand side of (2). A critical condition for the convergence of 
perturbation series like ( 2 )  is that the unperturbed eigenvalues Hi, must be non- 
degenerate. The iterative substitution of E,  into the denominators of (2) causes 
several of them to vanish otherwise. We are left with poles of the individual terms. 
This does not apply, however, to the total energy gain 4E. All poles arising in the 
individual terms cancel mutually as a consequence of the conservation law for level 
centres. 

In  order to prove this theorem we start by dissecting the sum over i in (5) 
into two sums extending overjm and j E b .  We show the first of these sums to vanish 
by interchanging the summation indices i and j ,  which both cover all occupied 
states, i, j ~ a ,  This leaves us with the second sum 

A similar dissection of the sums overj, k, 1 in (6), (7) and a subsequent interchange 
of summation indices yields 
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We now have summations extending either over occupied states or over unoccupied 
states so that no poles arise if the electrons occupy the unperturbed states according 
to Fermi statistics. The  unperturbed states l i )  are assumed to be occupied for Hi, 
smaller than the Fermi energy <, and to be unoccupied for Hii larger than the Fermi 
energy 5. This occupation status is taken to be adiabatically maintained by the 
perturbed level system E,. 

Consequently, we find the second-order contribution A,E to be negative owing 
to [Hijjz > 0 and H j j  > 5 > Hii .  The total electron energy decreases in second order 
of perturbation, independent of the special form of the interaction Hamiltonian H. 
The sign of the third and fourth order contributions h,E and A4E is not fixed in the 
same manner; the denominators in (9), (10) are all chosen to be positive. 

A similar cancellation of poles in AE may be proved in general order of 
perturbation. 

3. Factorization 
In  treating van der Waals attraction by means of the Drude model, the cancellation 

of poles in the perturbation series for AE is one essential simplification. A second is 
the introduction of a linear integral transformation, which factorizes the frequency 
term adjoined to a multiplet i, j ,  k, ... of dipoles. This factorization enables the 
summation of the individual dipole contributions to atomic polarizabilities, and the 
integration of the atomic induction fields to macroscopic reaction fields. 

In  view of the obvious simplifications introduced by the integral transformation, 
we now look for an equivalent transformation of the quantum mechanical approach. 
Is it possible to find a linear integral operator O(() which, applied to a factorized 
representation f ( ( ,  Hii)f((, H j j )  f((, H k k )  ... of the sequence i, j ,  k, ... of states, yields 
the denominators given in (8) to (lo), and also the correct higher order terms? 

A detailed examination of equations (8) to (10) reveals the conditions 
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According to an investigation of the higher-order terms, equation (13) turns out to 
be a special case of the general condition 

o(f) f(t, Hit) f(t, H j j )  f(t, * a a 

for i, jea or i, j d .  Condition (14) yields the functional relation 

which can be satisfied by 

kiith G(f) being an arbitrary function of 5. Haling fixed the functional form of 
f(t, Htl )  from conditions (13) and (14) ,we determine the explicit form of the integral 
operator O ( t )  by satisfying conditions (12) and (13). With respect to (14) it proves 
sufficient to satisfy these conditions for i ~ a ,  jEb. On the basis of 

= 0 for Hi,, H,, < t: 
1 

for Hi, < t: < H,, 

for t: < H,,, H, ,  

(17) - Lfx d t  1 
2ni (t--Hii)(t-Hjj) - HiL-H,, 

= o  
where the path of integration crosses the real E axis at the Fermi energy i ,  we put 

and 
1 

Hence, 

The sums over i , j ,  K ,  ... in (20) include all electron states. In  order to compensate for 
the fact that all summations are now equivalent, we multiplied the terms of order n. 
by l /n.  All terms in (ZO), which contain only occupied or only unoccupied states, 
vanish after integration over t. 
4. Applications 

simplifications and extensions : 
The factorized representation (20) of the total interaction energy enables several 
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(i) If there are several states KEA, which do not directly interact with each other, 
we find their joint contribution to the interaction between other states i , j $ A  to be 

A summation of this type is the fusion of the individual dipole contributions to 
atomic polarizabilities in the Drude model formalism of van der Waals attraction 
(Langbein 1970a). 

(ii) Let us consider two groups of states A and B, which interact strongly if they 
belong to the same group, and only weakly when belonging to different groups. It is 
then convenient to summarize first the interactions within the same group, and to 
introduce effective matrix eIements 

for the interactions between states belonging to different groups, &A, ~ E B ,  Using (22) 
the total interaction energy AEAB between groups A and B can be written in the form 

Hi ie f f  is closely related to the Green’s function G(i, j )  corresponding to states 1;) 
and Ij}.  We obtain 

The analogue to HZjeff in the Drude model formalism of van der Waals attraction 
between solids A and B is the screened field Ti jSCr  of dipole i in A at positionj in B. 

(iii) In  the above investigations we assumed for simplicity that the states Ii} be 
one-electron states. However, the procedure is also applicable if the states Ii} 
represent the ground and excited states of distinct groups of electrons, as for instance 
of electrons localized at the same molecule. Though the superiority of such a many- 
electron formalism cannot be questioned, this method does not yield additional 
information on the van der Waals attraction for lack of experimental data. 

(iv) An application of the above formalism to superconductivity, where the electron 
pair states and hole pair states can be assumed to form groups A and B as discussed 
in (ii) will be reported in a subsequent paper. 
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